Step of Proof: ext-eq_transitivity
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
ext-eq
transitivity
:
A
,
B
,
C
:Type.
A
B
B
C
A
C
latex
by ((Unfold `ext-eq` 0)
CollapseTHEN (((Auto
)
CollapseTHEN (((((D (0)
)
CollapseTHEN (Auto
C
))
)
CollapseTHEN (((SubsumeC
B
)
CollapseTHEN (Auto
))
))
))
))
latex
C
.
Definitions
t
T
,
P
&
Q
,
A
B
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
member
wf
,
subtype
rel
wf
origin